- import pandas as pd
- import numpy as np # Add this line
- from sklearn.cluster import KMeans
- import seaborn as sns
- import warnings
- warnings.filterwarnings("ignore", category=RuntimeWarning)
- data_full = pd.read_csv('/datasets/cars_label.csv')
- data = data_full.drop(columns=['brand'])
- # Обучение модели
- model = KMeans(n_clusters=3, random_state=12345)
- model.fit(data)
- # Дополнительный слой для центроидов
- centroids = pd.DataFrame(model.cluster_centers_, columns=data.columns)
- centroids['brand'] = ['0 centroid', '1 centroid', '2 centroid']
- data_all= pd.concat([data_full, centroids], ignore_index=True)
- pairgrid = sns.pairplot(data_full, hue='brand', vars=data.columns[:-1], diag_kind='hist')