fruit

From Kate, 5 Months ago, written in Plain Text, viewed 109 times. This paste will die in 1 Second.
URL http://codebin.org/view/22cad52c Embed
Download Paste or View Raw
  1. from tensorflow.keras.preprocessing.image import ImageDataGenerator
  2. from tensorflow.keras.models import Sequential
  3. from tensorflow.keras.layers import Dense, Conv2D, AveragePooling2D, Flatten
  4. from tensorflow.keras.optimizers import Adam
  5. from tensorflow.keras.applications.resnet import ResNet50
  6.  
  7. def load_train(path):
  8.     datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True, vertical_flip = True)
  9.  
  10.     train_datagen_flow = datagen.flow_from_directory(
  11.         path,
  12.         target_size=(150, 150),
  13.         batch_size=16,
  14.         class_mode='sparse',
  15.         seed=12345
  16.     )
  17.  
  18.     return train_datagen_flow
  19.  
  20.  
  21. def create_model(input_shape):
  22.  
  23.     backbone = ResNet50(input_shape=input_shape,
  24.                     weights=None,
  25.                     include_top=False)
  26.  
  27.     model = Sequential()
  28.     model.add(backbone)
  29.     model.add(GlobalAveragePooling2D())
  30.     model.add(Dense(12, activation='softmax'))
  31.  
  32.     model.compile(loss='sparse_categorical_crossentropy',
  33.                   optimizer= Adam(lr = 0.01), metrics=['acc'])
  34.    
  35.     return model
  36.  
  37. def train_model(model, train_data, test_data, batch_size=None, epochs=3,
  38.                 steps_per_epoch=None, validation_steps=None):
  39.     model.fit(train_data,
  40.               validation_data=test_data,
  41.               batch_size=batch_size, epochs=epochs,
  42.               steps_per_epoch=steps_per_epoch,
  43.               validation_steps=validation_steps,
  44.               verbose=2)
  45.     return model

Reply to "fruit"

Here you can reply to the paste above