import pandas as pd
from sklearn.tree import DecisionTreeClassifier
data = pd.read_csv('/datasets/heart.csv')
features = data.drop(['target'], axis=1)
target = data['target']
scores = []
# ??????? ?????? ?????, ???? ?? ????? ???
sample_size = int(len(data)/3)
for i in range(0, len(data), sample_size):
valid_indexes = data.loc[i: i+sample_size].index
train_indexes = data[:i].index.union(data[i+sample_size:].index)
# ???????? ?????????? features ? target ?? ??????? features_train, target_train, features_valid, target_valid
# < ???????? ??? ????? >
features_valid = features.loc[valid_indexes]
target_valid = target.loc[valid_indexes]
features_train = features.loc[train_indexes]
target_train = target.loc[train_indexes]
model = DecisionTreeClassifier(random_state=0)
model = model.fit(features_train, target_train)
score = model.score(features_valid, target_valid) # < ??????? ???????? ?????? >
scores.append(score)
scores = pd.Series(scores)
final_score = scores.mean()
print('??????? ?????? ???????? ??????:', final_score)
Re: Excersize
From Smelly Mockingjay, 7 Months ago, written in Plain Text, viewed 154 times.
This paste is a reply to Excersize from Ivan Kirilenkov
- go back
URL http://codebin.org/view/534291fd/diff
Embed
Viewing differences between Excersize and Re: Excersize
— Expand Paste to full width of browser