Re: Re: Untitled

From Walloping Plover, 3 Months ago, written in Python, viewed 52 times. This paste is a reply to Re: Untitled from Idiotic Hamerkop - view diff
URL http://codebin.org/view/64ca1377 Embed
Download Paste or View Raw
  1. from tensorflow.keras.datasets import fashion_mnist
  2. from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D, MaxPooling2D
  3. from tensorflow.keras.models import Sequential
  4. from tensorflow.keras.optimizers import Adam
  5.  
  6. import numpy as np
  7.  
  8. def load_train(path):
  9.     features_train = np.load(path + 'train_features.npy')
  10.     target_train = np.load(path + 'train_target.npy')
  11.     features_train = features_train.reshape(features_train.shape[0], 28 * 28) / 255.
  12.     return features_train, target_train
  13.  
  14. def create_model(input_shape):
  15.     model = Sequential()
  16.    
  17.     model.add(Dense(units=240, input_shape=input_shape, activation="relu"))
  18.     model.add(Dense(units=120, activation='relu')),
  19.     model.add(Dense(units=10, activation='softmax'))
  20.  
  21.  
  22.     return model
  23.  
  24. def train_model(model, train_data, test_data, batch_size=32, epochs=8,
  25.                steps_per_epoch=None, validation_steps=None):
  26.     optimizer = Adam(lr=0.01)
  27.     model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['acc'])
  28.     features_train, target_train = train_data
  29.     features_test, target_test = test_data
  30.     model.fit(features_train, target_train,
  31.               validation_data=(features_test, target_test),
  32.               batch_size=batch_size, epochs=epochs,
  33.               steps_per_epoch=steps_per_epoch,
  34.               validation_steps=validation_steps,
  35.               verbose=2, shuffle=True)
  36.  
  37.     return model

Reply to "Re: Re: Untitled"

Here you can reply to the paste above