Untitled

From Ivan, 4 Months ago, written in Plain Text, viewed 58 times.
URL http://codebin.org/view/79120876 Embed
Download Paste or View Raw
  1. from tensorflow.keras.datasets import fashion_mnist
  2. from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D
  3. from tensorflow.keras.models import Sequential
  4. import numpy as np
  5.  
  6.  
  7. def load_train(path):
  8.     features_train = np.load(path + 'train_features.npy')
  9.     target_train = np.load(path + 'train_target.npy')
  10.     features_train = features_train.reshape(features_train.shape[0], 28 * 28) / 255.
  11.     return features_train, target_train
  12.  
  13.  
  14. def create_model(input_shape):
  15.     model = Sequential()
  16.     model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='same',
  17.                  activation="relu", input_shape=input_shape))
  18.     model.add(AvgPool2D(pool_size=(2, 2), strides=None, padding='valid'))
  19.     model.add(Conv2D(filters=16, kernel_size=(5, 5), padding='valid',activation="relu"))
  20.     model.add(Flatten())
  21.     model.add(Dense(units=10, activation='softmax'))
  22.     model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc'])
  23.  
  24.     return model
  25.  
  26.  
  27. def train_model(model, train_data, test_data, batch_size=32, epochs=100,
  28.                steps_per_epoch=None, validation_steps=None):
  29.  
  30.     features_train, target_train = train_data
  31.     features_test, target_test = test_data
  32.     model.fit(features_train, target_train,
  33.               validation_data=(features_test, target_test),
  34.               batch_size=batch_size, epochs=epochs,
  35.               steps_per_epoch=steps_per_epoch,
  36.               validation_steps=validation_steps,
  37.               verbose=2, shuffle=True)
  38.  
  39.     return model
  40.  

Reply to "Untitled"

Here you can reply to the paste above