Untitled

From Anorexic Hamster, 4 Months ago, written in Plain Text, viewed 188 times.
URL http://codebin.org/view/82af71ea Embed
Download Paste or View Raw
  1. from tensorflow.keras import Sequential
  2. from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D
  3. import matplotlib.pyplot as plt
  4. import numpy as np
  5.  
  6.  
  7. features_train = np.load('/datasets/fashion_mnist/train_features.npy')
  8. target_train = np.load('/datasets/fashion_mnist/train_target.npy')
  9. features_test = np.load('/datasets/fashion_mnist/test_features.npy')
  10. target_test = np.load('/datasets/fashion_mnist/test_target.npy')
  11.  
  12.  
  13. features_train = features_train.reshape(-1, 28, 28, 1) / 255.0
  14. features_test = features_test.reshape(-1, 28, 28, 1) / 255.0
  15.  
  16. model = Sequential()
  17. model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='same', activation='tanh',
  18.                  input_shape=(28, 28, 1)))
  19. model.add(AvgPool2D(pool_size=(2, 2)))
  20. model.add(Conv2D(filters=16, kernel_size=(5, 5), padding='valid', activation='tanh'))
  21. model.add(AvgPool2D(pool_size=(2, 2)))
  22. model.add(Flatten())
  23. model.add(Dense(units=120, activation='tanh'))
  24. model.add(Dense(units=84, activation='tanh'))
  25. model.add(Dense(units=10, activation='softmax'))
  26. model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['acc'])
  27.  
  28. model.summary()
  29. model.fit(features_train, target_train, epochs=1, verbose=1,
  30.           steps_per_epoch=1, batch_size=1)

Reply to "Untitled"

Here you can reply to the paste above