- from tensorflow.keras.datasets import fashion_mnist
- from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D
- from tensorflow.keras.models import Sequential
- from tensorflow.keras.optimizers import Adam
- import numpy as np
- def load_train(path):
- datagen = ImageDataGenerator(
- validation_split=0.25,
- rescale=1./255,
- horizontal_flip=True,
- vertical_flip=True)
- #rotation_range=90,
- #width_shift_range=0.2,
- #height_shift_range=0.2)
- train_data = datagen.flow_from_directory(
- path,
- target_size=(150, 150),
- batch_size=16,
- class_mode='sparse',
- subset='training',
- seed=12345)
- return train_data
- def create_model(input_shape):
- model = Sequential()
- model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='same',
- activation="relu", input_shape=input_shape))
- model.add(AvgPool2D(pool_size=(2, 2), strides=None, padding='valid'))
- model.add(Conv2D(filters=12, kernel_size=(5, 5), padding='valid',activation="relu"))
- model.add(Flatten())
- model.add(Dense(units=12, activation='softmax'))
- optimizer = Adam()
- model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['acc'])
- return model
- def train_model(model, train_data, test_data, batch_size=16, epochs=2,
- steps_per_epoch=None, validation_steps=None):
- model.fit(train_data,
- validation_data=test_data,
- batch_size=batch_size, epochs=epochs,
- steps_per_epoch=steps_per_epoch,
- validation_steps=validation_steps,
- verbose=2)
- return model