Untitled

From Kate, 5 Months ago, written in Plain Text, viewed 75 times. This paste will perish in 1 Second.
URL http://codebin.org/view/8a7ee0f1 Embed
Download Paste or View Raw
  1. from tensorflow.keras.preprocessing.image import ImageDataGenerator
  2. from tensorflow.keras.models import Sequential
  3. from tensorflow.keras.layers import Dense, Conv2D, AveragePooling2D, Flatten
  4. from tensorflow.keras.optimizers import Adam
  5. from tensorflow.keras.applications.resnet import ResNet50
  6.  
  7. def load_train(path):
  8.     datagen = ImageDataGenerator(validation_split=0.25, rescale=1./255, horizontal_flip=True, vertical_flip = True)
  9.  
  10.     train_datagen_flow = datagen.flow_from_directory(
  11.         path,
  12.         target_size=(150, 150),
  13.         batch_size=16,
  14.         class_mode='sparse',
  15.         seed=11
  16.     )
  17.  
  18.  
  19.     return train_datagen_flow
  20.  
  21.  
  22. def create_model(input_shape):
  23.  
  24.     model = ResNet50(input_shape=(150, 150, 3),
  25.                  classes=1000,
  26.                  include_top=True,
  27.                  weights=imagenet')
  28.     model.add(Dense(12, activation='softmax'))
  29.  
  30.     model.compile(loss='sparse_categorical_crossentropy',
  31.                   optimizer= Adam(lr = 0.01), metrics=['accuracy'])
  32.     return model
  33.  
  34.  
  35. def train_model(model, train_data, test_data, batch_size=None, epochs=3,
  36.                 steps_per_epoch=None, validation_steps=None):
  37.     model.fit(train_data,
  38.               validation_data=test_data,
  39.               batch_size=batch_size, epochs=epochs,
  40.               steps_per_epoch=steps_per_epoch,
  41.               validation_steps=validation_steps,
  42.               verbose=2)
  43.     return model

Reply to "Untitled"

Here you can reply to the paste above