Untitled

From Putrid Capybara, 4 Months ago, written in Plain Text, viewed 72 times.
URL http://codebin.org/view/a4daddd0 Embed
Download Paste or View Raw
  1. from tensorflow.keras.datasets import fashion_mnist
  2. from tensorflow.keras.layers import Dense
  3. from tensorflow.keras.models import Sequential
  4. import numpy as np
  5.  
  6. def load_train(path):
  7.     features_train = np.load(path + 'train_features.npy')
  8.     target_train = np.load(path + 'train_target.npy')
  9.     features_train = features_train.reshape(features_train.shape[0], 28 * 28) / 255.
  10.     return features_train, target_train
  11.  
  12. def create_model(input_shape):
  13.     model = Sequential()
  14.     model.add(Dense(10, input_shape=input_shape, activation='softmax'))
  15.     model.add(Dense(50, input_shape=input_shape, activation='softmax'))
  16.     model.add(Dense(100, input_shape=input_shape, activation='softmax'))
  17.     model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy',
  18.                   metrics=['acc'])
  19.  
  20.     return model
  21.  
  22. def train_model(model, train_data, test_data, batch_size=32, epochs=5,
  23.                steps_per_epoch=None, validation_steps=None):
  24.  
  25.     features_train, target_train = train_data
  26.     features_test, target_test = test_data
  27.     model.fit(features_train, target_train,
  28.               validation_data=(features_test, target_test),
  29.               batch_size=batch_size, epochs=epochs,
  30.               steps_per_epoch=steps_per_epoch,
  31.               validation_steps=validation_steps,
  32.               verbose=2, shuffle=True)
  33.  
  34.     return model

Reply to "Untitled"

Here you can reply to the paste above