Untitled

From Subtle Armadillo, 3 Months ago, written in Python, viewed 57 times. This paste will explode in 1 Second.
URL http://codebin.org/view/ca5aad2f Embed
Download Paste or View Raw
  1. from tensorflow.keras import Sequential
  2. from tensorflow.keras.layers import Conv2D, Flatten, Dense
  3. import matplotlib.pyplot as plt
  4. import numpy as np
  5. #import keras
  6. from keras import MaxPooling2D
  7.  
  8.  
  9. features_train = np.load('/datasets/fashion_mnist/train_features.npy')
  10. target_train = np.load('/datasets/fashion_mnist/train_target.npy')
  11. features_test = np.load('/datasets/fashion_mnist/test_features.npy')
  12. target_test = np.load('/datasets/fashion_mnist/test_target.npy')
  13.  
  14. features_train = features_train.reshape(-1, 28, 28, 1) / 255.0
  15. features_test = features_test.reshape(-1, 28, 28, 1) / 255.0
  16.  
  17. model = Sequential()
  18. model.add(Conv2D(filters=4, kernel_size=(3, 3), padding='same',
  19.                  activation="relu", input_shape=(28, 28, 1)))
  20. model.add(Conv2D(filters=4, kernel_size=(3, 3), strides=2, padding='same',
  21.                  activation="relu"))
  22. model.add(MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid'))
  23. model.add(Flatten())
  24. model.add(Dense(units=10, activation='softmax'))
  25.  
  26. model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['acc'])
  27. model.summary()
  28. model.fit(features_train, target_train, epochs=1, verbose=1,
  29.           steps_per_epoch=1, batch_size=1)

Reply to "Untitled"

Here you can reply to the paste above