- from tensorflow.keras.preprocessing.image import ImageDataGenerator
- from tensorflow.keras.models import Sequential
- from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D
- from tensorflow.keras.optimizers import Adam
- def load_train(path):
- datagen = ImageDataGenerator(rescale=1./255.,horizontal_flip=True,
- vertical_flip=True)
- train_datagen_flow = datagen.flow_from_directory(
- path,
- target_size=(150, 150),
- batch_size=16,
- calss_mode='sparse',
- seed=12345)
- return train_datagen_flow
- # Создание модели
- def create_model(input_shape):
- model = Sequential()
- model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='same', activation='relu', input_shape=input_shape))
- model.add(AvgPool2D(pool_size=(2, 2)))
- model.add(Conv2D(filters=14, kernel_size=(5, 5),activation='relu'))
- model.add(AvgPool2D(pool_size=(2, 2)))
- model.add(Flatten())
- model.add(Dense(80, activation='relu'))
- model.add(Dense(12, activation='softmax')),
- optimizer = Adam(lr=0.005),
- model.compile(optimizer=optimizer,
- loss='sparse_categorical_crossentropy',
- metrics=['acc'])
- return model
- def train_model(model, train_data, test_data, batch_size=None, epochs=10, steps_per_epoch=None, validation_steps=None):
- model.fit(train_data,
- validation_data=test_data,
- batch_size = batch_size,
- steps_per_epoch=steps_per_epoch,
- validation_steps=validation_steps,
- epochs=epochs,verbose=2,
- shuffle=True )
- return model