import pandas as pd from sklearn.tree import DecisionTreeClassifier data = pd.read_csv('/datasets/heart.csv') features = data.drop(['target'], axis=1) target = data['target'] scores = [] # зададим размер блока, если их всего три sample_size = int(len(data)/3) for i in range(0, len(data), sample_size): valid_indexes = data.loc[i: i+sample_size].index train_indexes = data[:i].index.union(data[i+sample_size:].index) # разбейте переменные features и target на выборки features_train, target_train, features_valid, target_valid # < напишите код здесь > features_valid = features.loc[valid_indexes] target_valid = target.loc[valid_indexes] features_train = features.loc[train_indexes] target_train = target.loc[train_indexes] model = DecisionTreeClassifier(random_state=0) model = model.fit(features_train, target_train) score = model.score(features_valid, target_valid) # < оцените качество модели > scores.append(score) scores = pd.Series(scores) final_score = scores.mean() print('Средняя оценка качества модели:', final_score)