- import pandas as pd
- from sklearn.tree import DecisionTreeClassifier
- data = pd.read_csv('/datasets/heart.csv')
- features = data.drop(['target'], axis=1)
- target = data['target']
- scores = []
- # зададим размер блока, если их всего три
- sample_size = int(len(data)/3)
- for i in range(0, len(data), sample_size):
- valid_indexes = data.loc[i: i+sample_size].index
- train_indexes = data[:i].index.union(data[i+sample_size:].index)
- # разбейте переменные features и target на выборки features_train, target_train, features_valid, target_valid
- # < напишите код здесь >
- features_valid = features.loc[valid_indexes]
- target_valid = target.loc[valid_indexes]
- features_train = features.loc[train_indexes]
- target_train = target.loc[train_indexes]
- model = DecisionTreeClassifier(random_state=0)
- model = model.fit(features_train, target_train)
- score = model.score(features_valid, target_valid) # < оцените качество модели >
- scores.append(score)
- scores = pd.Series(scores)
- final_score = scores.mean()
- print('Средняя оценка качества модели:', final_score)