Untitled

From Commodious Rhinoceros, 2 Months ago, written in Plain Text, viewed 51 times.
URL http://codebin.org/view/f2349d40 Embed
Download Paste or View Raw
  1. import pandas as pd
  2. from sklearn.tree import DecisionTreeClassifier
  3.  
  4. data = pd.read_csv('/datasets/heart.csv')
  5. features = data.drop(['target'], axis=1)
  6. target = data['target']
  7.  
  8. scores = []
  9.  
  10.  
  11. sample_size = int(len(data)/3)
  12.  
  13. for i in range(0, len(data), sample_size):
  14.     valid_indexes = data.iloc[i: i + sample_size].index
  15.     train_indexes = (data.iloc[:i] + data.iloc[i + sample_size:]).index
  16.    
  17. features_train = features.iloc[train_indexes]
  18. features_valid = features.iloc[valid_indexes]
  19. target_train = target.iloc[train_indexes]
  20. target_valid = target.iloc[valid_indexes]      
  21.  
  22. model = DecisionTreeClassifier(random_state=0)
  23. model = model.fit(features_train, target_train)
  24. score = model.score(features_valid,target_valid)
  25.    
  26. scores.append(score)
  27.  
  28.  
  29. final_score = sum(scores) / len(scores)
  30. print('Средняя оценка качества модели:', final_score)

Reply to "Untitled"

Here you can reply to the paste above